
1

PeopleKeys 3 API (rev 20160104)

Contents

PeopleKeys 3 API (rev 20160104) ... 1

Log of Changes ... 2

Accounts .. 3

Subaccounts... 6

Users .. 7

Invites .. 10

Assessments .. 11

Client-Side Assessments .. 24

Benchmarking .. 35

Error Handling ... 43

2

Log of Changes

Benchmarking

 GET /app/api/benchmark/list. Updated (new assessment types).

 GET /app/api/benchmark/calculated/results/:config_id. Updated (new assessment types).

 GET /app/api/benchmark/apply/:benchmark_id/:result_id. Updated (new assessment types).

 GET /app/api/ benchmark/apply/client_side/:benchmark_id/:result_id. Updated (new assessment

types).

3

Accounts

Method: GET
Description: Returns information about the API caller account.
Route: /app/api/account/
Response: JSON array

{

 account_id,

 name,

 desc,

 type,

 owner_id,

 created_date,

 last_updated,

 region

}

account_id – account ID.
name – account name.
desc – account description.
type – account type [public | private].
owner_id – ID of the account owner.
created_date – [yyyy-mm-dd hh:mm:ss] account creation timestamp.
last_updated – [yyyy-mm-dd hh:mm:ss] account data last update timestamp.
region – account default geographic region.
Method: PUT
Description: Updates information on the API caller account.
Route: /app/api/account/
HTTP Form Parameters:
account_id – API caller account ID.
name – account name.
desc – account description.
type – account type [public | private].
region – account default geographic region.

Method: POST
Description: Creates a metadata entry for the API caller account or one of its subaccounts.
Route: /app/api/account/meta/
HTTP Form Parameters:
account_id – account ID.
key – the meta-entry name.
value – the meta-entry value.

4

Method: GET
Description: Retrieves information about existing account tags.
Route: /app/api/account/:account_id/tags
HTTP URL Parameters:
account_id – ID of the account.
Response: JSON array

[

 {

 tag,

 count

 },

 …

]

tag – tag name.
count – number of PK3 users and/or external users associated with the tag.

Method: POST
Description: Creates new tags to use in the account.
Route: /app/api/account/:account_id/tags
HTTP URL Parameters:
account_id – ID of the account.
HTTP Form Parameters:
tags – JSON array

{

 tag_list = […]

}

tag_list – list of tags to be created in the account.
Response: JSON array

{

 tags_affected

}

tags_affected – number of listed tags created in the account.

5

Method: PUT
Description: Updates existing account tags.
Route: /app/api/account/:account_id/tags
HTTP URL Parameters:
account_id – ID of the account.
HTTP Form Parameters:
tags – JSON array

{

 tag_list = [

 {

 old_name,

 new_name

 },

 …

]

}

tag_list – list of tags to be updated (renamed).
old_name – old tag name.
new_name – new tag name.
Response: JSON array

{

 tags_affected

}

tags_affected – number of listed tags renamed.

Method: DELETE
Description: Deletes account tags.
Route: /app/api/account/:account_id/tags?tags=:tags
HTTP URL Parameters:
account_id – ID of the account.
HTTP GET Parameters:
tags – JSON array

{

 tag_list = […]

}

tag_list – list of tags to be deleted from the account.
Response: JSON array

{

 tags_affected

}

tags_affected – number of listed tags deleted from the account.

6

Subaccounts

Method: GET
Description: Returns information about subaccounts of the API caller account.
Route: /app/api/subaccounts/
Response: JSON array

[

 {

 account_id,

 name,

 desc,

 type,

 owner_id,

 created_date,

 last_updated,

 region

 },

 …

]

account_id – account ID.
name – account name.
desc – account description.
type – account type [public | private].
owner_id – ID of the account owner.
created_date – [yyyy-mm-dd hh:mm:ss] account creation timestamp.
last_updated – [yyyy-mm-dd hh:mm:ss] account data last update timestamp.
region – account default geographic region.

Method: POST
Description: Creates a new subaccount for the API caller account or one of its subaccounts.
Route: /app/api/subaccounts/
HTTP Form Parameters:
account_id – [optional] parent account ID. Default value: API caller account ID.
name – account name.
desc – account description.
type – account type [public | private].
region – account default geographic region.

7

Method: PUT
Description: Updates information on the subaccount of the API caller account.
Route: /app/api/subaccounts/
HTTP Form Parameters:
account_id – ID of the account to update.
name – account name.
desc – account description.
type – account type [public | private].
region – account default geographic region.

Method: DELETE
Description: Deletes the subaccount of the API caller account.
Route: /app/api/subaccounts/:account_id/
HTTP URL Parameters:
account_id – ID of the account to delete.

Users

Method: GET
Description: Returns information about users in the API caller account or one of its subaccounts.
Route: /app/api/account/:account_id/users/
Response: JSON array

[

 {

 user_id,

 name,

 email,

 role,

 category,

 stub,

 created_date,

 last_visited,

 region

 },

 …

]

user_id – user ID.
name – user name (nick).
email – user email (login).
role – user role in the account [owner | manager | member].
category – account membership category.
stub – custom ‘stub’ part of the user invite URL.
created_date – [yyyy-mm-dd hh:mm:ss] user creation timestamp.
last_visited – [yyyy-mm-dd hh:mm:ss] last time the user visited the PeopleKeys application.
region – user geographic region.

8

Method: POST
Description: Creates new user and adds it to the API caller account or one of its subaccounts.
Route: /app/api/account/users/
HTTP Form Parameters:
account_id – ID of the account to add the new user to.
role – user role in the account [owner | manager | member].
category – [optional] account membership category.
name – new user name (nick).
email – new user email (login).
password – new user password as plain-text string.

Method: PUT
Description: Updates information about existing membership of the user in the API caller account or

one of its subaccounts.
Route: /app/api/account/users/
HTTP Form Parameters:
account_id – ID of the account.
user_id – ID of the user.
role – user role in the account [owner | manager | member].
category – account membership category.

Method: DELETE
Description: Removes the user from the API caller account or one of its subaccounts.
Route: /app/api/account/:account_id/users/:user_id
HTTP URL Parameters:
account_id – ID of the account to delete.
user_id – ID of the user.

Method: GET
Description: Retrieves list of tags associated with the existing user within the context of given account.
Route: /app/api/user/tags/:account_id/:user_id
HTTP URL Parameters:
account_id – ID of the account. Tags are looked up within the context of this account.
user_id – ID of the user.
Response: JSON array

{

 tag_list = […]

}

tag_list – list of tags associated with the user record within given account.

9

Method: POST
Description: Associates tags with the existing user. New account tags are created if needed.
Route: /app/api/user/tags/:account_id/:user_id
HTTP URL Parameters:
account_id – ID of the account. Tags are looked up within the context of this account.
user_id – ID of the user.
HTTP Form Parameters:
tags – JSON array

{

 tag_list = […]

}

tag_lists – list of tags to be associated with the user record.
Response: JSON array

{

 tags_affected

}

tags_affected – number of listed tags associated with the user.

Method: DELETE
Description: Removes association of given tags with the existing user.
Route: /app/api/user/tags/:account_id/:user_id?tags=:tags
HTTP URL Parameters:
account_id – ID of the account. Tags are looked up within the context of this account.
user_id – ID of the user.
HTTP GET Parameters:
tags – JSON array

{

 tag_list = […]

}

tag_list – list of tags to be removed from association with the user record.
Response: JSON array

{

 tags_affected

}

tags_affected – number of listed tags removed from association with the user.

10

Invites

Method: POST
Description: Generates an invite URL on behalf of API caller account or one of its subaccounts. The

customer that wants to invite new user to take specific assessment test on PK3 site, sends
the request and passes the parameters as specified in the doc (the user identity, the
assessment ID and so on). The PK3 Web service executes the request, generates the invite
URL and returns it to the caller as the 'link' parameter of the response. Next, the user can
copy the URL in the address field of his/her Internet browser and press 'Enter'.
Alternatively, a client Web application can automatically open the invite URL in the new
browser window or in the iFrame of the existing browser window. If the ‘participant’ flag is
set, the user will be automatically logged into PK site and redirected to the beginning of
the assessment test. If the same invite URL for the ‘participant’ user is used more than
once, the user is redirected to the page of the assessment test where the test was dropped
(or to the final page of the assessment, if the test was completed).

Route: /app/api/account/invite/
HTTP Form Parameters:
account_id – ID of the account.
email – user email (login).
expire date – [optional] the date invite URL expires on. Invite URL never expires, if not specified.
category – [optional] account membership category.
role – [optional] user role in the account [owner | manager | member]. User is assigned a

‘member’ role, if not specified.
name – new user name (nick).
allow_view – [optional] the flag indicates the user can see assessment results [0|1]. Flag is not set by

default.
exit_url – [optional] custom URL the user is redirected to after completion of the assessment.
allow_email – [optional] the flag indicates the system sends email notification to account managers on

completion of the assessment [0|1]. Flag is not set by default.
participant – [optional] the flag indicates the new user is automatically signed on into the system when

it enters the site via this invite URL [0|1]. Flag is not set by default.
assessment_id – ID of the assessment the new user is granted rights to pass.
tags – [optional] JSON array

{

 tag_list = […]

}

tag_lists – list of tags to be associated with the user record. If the user already exists, the list of tags
will be merged with the list of existing tags for this user. New account tags are created if
needed.

Response: JSON array
{

 link

}

link – invite URL.

11

Assessments

Method: GET
Description: Returns list of assessments available for the API caller account or one of its subaccounts.
Route: /app/api/assessments/:account_id
HTTP URL Parameters:
account_id – ID of the account.
Response: JSON array

[

 {

 assessment_id,

 owner_id,

 name,

 quantity,

 infinite

 },

 …

]

assessment_id – assessment ID.
owner_id – user ID of the record owner.
name – assessment name.
quantity – number of available assessments.
infinite – the flag indicates the account has infinite number of available assessments [0|1].

Method: PUT
Description: Transfer the rights to pass assessments between the API caller account and its

subaccounts.
Route: /app/api/assessment/transfer
HTTP Form Parameters:
assessment_id – assessment ID.
sender_account_id – ID of the account to transfer the assessment rights from.
recipient_account_id – ID of the account to transfer the assessment rights to.
quantity – number of available assessment passes to transfer.

12

Method: GET
Description: Returns detailed information about given assessment.
Route: /app/api/assessment/:assessment_id/
HTTP URL Parameters:
assessment_id – assessment ID.
Response: JSON array

{

 assessment_id,

 name,

 description,

 environment

}

assessment_id – assessment ID.
name – assessment name.
description – assessment description.
environment – assessment ‘environment’ tag.

[The method is DEPRECATED. Current version of API rejects requests to delete the assessment]
Method: DELETE
Description: Deletes the assessment.
Route: /app/api/assessment/:assessment_id/
HTTP URL Parameters:
assessment_id – ID of the assessment to delete.

Method: GET
Description: Returns a list of core assessment IDs for given assessment.
Route: /app/api/assessment/core/:assessment_id/
HTTP URL Parameters:
assessment_id – assessment ID.
Response: JSON array

{

 core_assessments

}

core_assessments – JSON array containing list of core assessment IDs.

13

Method: GET
Description: Returns information about pages for given assessment.
Route: /app/api/assessment/pages/:assessment_id/
HTTP URL Parameters:
assessment_id – assessment ID.
Response: JSON array

[

 {

 page_id,

 sort_order,

 type,

 content = {

 Type,

 Header,

 Sub-Header,

 Instructions

 }

 },

 …

]

page_id – assessment page ID.
sort_order – page order in the assessment.
type – page UI type.
content – page content:
 Type – page type.
 Header – page header.
 Sub-Header – page sub-header.
 Instructions – user instructions for assessment passage.

14

Method: GET
Description: Returns information about assessment page items.
Route: /app/api/assessment/items/:page_id/
HTTP URL Parameters:
page_id – assessment page ID.
Response: JSON array

[

 {

 item_id,

 sort_order,

 content = {

 Type,

 Question,

 Options = [

 { Value, Text },…

]

 }

 },

 …

]

item_id – page item ID.
sort_order – page item order on the page.
content – page item content:
 Type – page item type.
 Question – the question to answer.
 Value – answer value code.
 Text – answer text.

15

[The method is DEPRECATED. Use new version of this method instead]
Method: GET
Description: Returns information about assessment results available for the API caller account or one of

its subaccounts. Result status records are sorted by assessment start timestamp, the latest
record is first.

Route: /app/api/assessment/results/:account_id[?filterBy=:filterBy]
HTTP URL Parameters:
account_id – account ID.
HTTP GET Parameters:
filterBy – [optional] user email (login). Filters assessment results, returns the results available for

user identified by the email (login).
Response: JSON array

[

 {

 id,

 user_id,

 assessment_id

 date_completed,

 date_started,

 status

 },

 …

]

id – assessment result ID.
user_id – ID of the user that took the assessment.
assessment_id – assessment ID.
date_completed – [mm/dd/yy hh:mm[AM|PM]] assessment completion timestamp.
date_started – [mm/dd/yy hh:mm[AM|PM]] assessment start timestamp.
status – assessment completion status [Completed|In Progress].

16

Method: GET
Description: Returns information about assessment results available for the API caller account or one of

its subaccounts. Result status records are sorted by assessment start timestamp, the latest
record is first.

Route: /app/api/assessment/results/:account_id?extended[&email=:email]
[&max_records=:max_records][&start_record=:start_record][&date_since=:date_since]
[&tags=:tags]

HTTP URL Parameters:
account_id – account ID.
HTTP GET Parameters:
email – [optional] user email (login). Filters assessment results, returns the results available for

user identified by the email (login).
max_records – [optional] the maximum number of result status records returned per request. By

default, the maximum number of records is set to 10000. You cannot return more than
10000 result status records per request.

start_record – [optional] index of the first record. By default, index of the first record is 0.
date_since – [optional] [yyyy-mm-dd] filters out result records older than specified date.
tags – [optional] JSON array

{

 tag_list = […]

}

tag_lists – list of tags to apply as a filter. Filters assessment results, returns the results for users
associated with at least one of the listed tags.

Response: JSON array
{

 total_record_number,

 results = [

 {

 id,

 user_id,

 assessment_id

 date_completed,

 date_started,

 status

 },

 …

]

}

total_record_number – total number of result status records found that match the filters.
results – JSON array of result status records:
 id – assessment result ID.
 user_id – ID of the user that took the assessment.
 assessment_id – assessment ID.
 date_completed – [yyyy-mm-dd hh:mm:ss] assessment completion timestamp.
 date_started – [yyyy-mm-dd hh:mm:ss] assessment start timestamp.
 status – assessment completion status [Completed|In Progress].

17

[The method is DEPRECATED. Use GET /app/api/assessment/results/calculate/:result_id instead]
Method: POST
Description: Obtains calculated raw scores for given assessment result.
Route: /app/api/assessment/calculate/
HTTP Form Parameters:
result_id – assessment result ID.
Response: JSON array

{

 assessment_id,

 type,

 graph1_D,

 graph1_I,

 graph1_S,

 graph1_C,

 graph2_D,

 graph2_I,

 graph2_S,

 graph2_C,

 graph3_D,

 graph3_I,

 graph3_S,

 graph3_C,

 intensity,

 style

}

assessment_id – assessment result ID.
type – “DISC 24”.
graph1_D – graph #1 “D” score.
graph1_I – graph #1 “I” score.
graph1_S – graph #1 “S” score.
graph1_C – graph #1 “C” score.
graph2_D – graph #2 “D” score.
graph2_I – graph #2 “I” score.
graph2_S – graph #2 “S” score.
graph2_C – graph #2 “C” score.
graph3_D – graph #3 “D” score.
graph3_I – graph #3 “I” score.
graph3_S – graph #3 “S” score.
graph3_C – graph #3 “C” score.
intensity – DISC keyword.
style – calculated personality style.

18

Method: GET
Description: Obtains calculated raw scores for given assessment result.
Route: /app/api/assessment/results/calculate/:result_id
HTTP URL Parameters:
result_id – assessment result ID.
Response: JSON array

{

 result_id,

 type = […],

 bai = {

 score_I,

 score_S,

 score_P,

 score_E,

 score_A,

 score_K,

 primary_keyword,

 secondary_keyword

 },

 childrens = {

 score_D,

 score_I,

 score_S,

 score_C,

 intensity,

 style

 },

 cognitive = {

 score_L,

 score_I,

 score_T,

 score_E,

 primary_keyword,

 secondary_keyword

 },

 disc15 = {

 score_D,

 score_I,

 score_S,

 score_C,

 intensity,

 style

 },

 disc24 = {

 graph1_D,

 graph1_I,

 graph1_S,

 graph1_C,

 graph2_D,

 graph2_I,

 graph2_S,

 graph2_C,

19

 graph3_D,

 graph3_I,

 graph3_S,

 graph3_C,

 intensity,

 style

 },

 perceptual = {

 score_A,

 score_V,

 score_K,

 primary_keyword,

 secondary_keyword

 },

 sgi = {

 score_Administration,

 score_Apostle,

 score_Craftsman,

 score_Discernment,

 score_Encouragement,

 score_Evangelist,

 score_Faith,

 score_Giving,

 score_Healing,

 score_Helps,

 score_Intercession,

 score_Knowledge,

 score_Leadership,

 score_Mercy,

 score_Music,

 score_Pastor,

 score_Prophet,

 score_Serving,

 score_Teacher,

 score_Wisdom,

 absent_gifts = […],

 present_gifts = […]

 },

 teams = {

 score_T,

 score_E,

 score_A,

 score_M,

 score_S,

 primary_keyword,

 secondary_keyword

 },

 values = {

 score_L,

 score_E,

 score_P,

 score_J,

 primary_keyword,

 secondary_keyword

20

 }

}

result_id – assessment result ID.
type – a JSON array, list of assessment types

[bai|childrens|cognitive|disc15|disc24|perceptual|sgi|teams|values].
bai – section contains ‘BAI’ assessment results:
 score_I – the “Inner Awareness” score;
 score_S – the “Social/Humanitarian” score;
 score_P – the “Political/EmPowerment” score;
 score_E – the “Economic” score;
 score_A – the “Artistic” score;
 score_K – the “Knowledge” score;
 primary_keyword – primary ‘BAI’ style;
 secondary_keyword – secondary ‘BAI’ style.
childrens – section contains ‘CHILDREN’S’ assessment results:
 score_D – the “D” score;
 score_I – the “I” score;
 score_S – the “S” score;
 score_C – the “C” score;
 intensity – DISC code;
 style – calculated personality style.
cognitive – section contains ‘COGNITIVE’ assessment results:
 score_L – the “Literal” score;
 score_I – the “Intuitive” score;
 score_T – the “Theoretical” score;
 score_E – the “Experimental” score;
 primary_keyword – primary ‘COGNITIVE’ style;
 secondary_keyword – secondary ‘COGNITIVE’ style.
disc15 – section contains ‘DISC 15’ assessment results:
 score_D – the “D” score;
 score_I – the “I” score;
 score_S – the “S” score;
 score_C – the “C” score;
 intensity – DISC code;
 style – calculated personality style.
disc24 – section contains ‘DISC 24’ assessment results:
 graph1_D – graph #1 “D” score;
 graph1_I – graph #1 “I” score;
 graph1_S – graph #1 “S” score;
 graph1_C – graph #1 “C” score;
 graph2_D – graph #2 “D” score;
 graph2_I – graph #2 “I” score;
 graph2_S – graph #2 “S” score;
 graph2_C – graph #2 “C” score;
 graph3_D – graph #3 “D” score;
 graph3_I – graph #3 “I” score;

21

 graph3_S – graph #3 “S” score;
 graph3_C – graph #3 “C” score;
 intensity – DISC code;
 style – calculated personality style.
perceptual – section contains ‘PERCEPTUAL’ assessment results:
 score_A – the “Auditory” score;
 score_V – the “Visual” score;
 score_K – the “Kinesthetic” score;
 primary_keyword – primary ‘PERCEPTUAL’ style;
 secondary_keyword – secondary ‘PERCEPTUAL’ style.
sgi – section contains ‘SGI’ assessment results:
 score_Administration – the “Administration” score;
 score_Apostle – the “Apostle” score;
 score_Craftsman – the “Craftsman” score;
 score_Discernment – the “Discernment” score;
 score_Encouragement – the “Encouragement” score;
 score_Evangelist – the “Evangelist” score;
 score_Faith – the “Faith” score;
 score_Giving – the “Giving” score;
 score_Healing – the “Healing” score;
 score_Helps – the “Helps” score;
 score_Intercession – the “Intercession” score;
 score_Knowledge – the “Knowledge” score;
 score_Leadership – the “Leadership” score;
 score_Mercy – the “Mercy” score;
 score_Music – the “Music” score;
 score_Pastor – the “Pastor” score;
 score_Prophet – the “Prophet” score;
 score_Serving – the “Serving” score;
 score_Teacher – the “Teacher” score;
 score_Wisdom – the “Wisdom” score;
 absent_gifts – an array, list of absent gifts;
 present_gifts – an array, list of present gifts.
teams – section contains ‘TEAMS’ assessment results:
 score_T – the “Theorist” score;
 score_E – the “Executor” score;
 score_A – the “Analyst” score;
 score_M – the “Manager” score;
 score_S – the “Strategist” score;
 primary_keyword – primary ‘TEAMS’ style;
 secondary_keyword – secondary ‘TEAMS’ style.
values – section contains ‘VALUES’ assessment results:
 score_L – the “Loyalty” score;
 score_E – the “Equality” score;
 score_P – the “Personal Freedom” score;

22

 score_J – the “Justice” score;
 primary_keyword – primary ‘VALUES’ style;
 secondary_keyword – secondary ‘VALUES’ style.

 [The method is DEPRECATED. Use GET /app/api/assessment/results/download/:result_id instead]
Method: GET
Description: Downloads full PDF report for given assessment result.
Route: /app/api/assessment/:result_id/download
HTTP URL Parameters:
result_id – assessment result ID.
Response: Binary stream for PDF report. Content-Type: application/pdf. Content-Disposition:

attachment.

Method: GET
Description: Downloads full PDF report for given assessment result.
Route: /app/api/assessment/results/download/:result_id
HTTP URL Parameters:
result_id – assessment result ID.
Response: Binary stream for PDF report. Content-Type: application/pdf. Content-Disposition:

attachment.

Method: GET
Description: Downloads PDF report (graphs only) for given assessment result.
Route: /app/api/assessment/results/download_graph/:result_id
HTTP URL Parameters:
result_id – assessment result ID.
Response: Binary stream for PDF report. Content-Type: application/pdf. Content-Disposition:

attachment.

23

Method: GET
Description: Returns HTML nodes of “summary” report for given assessment result.
Route: /app/api/assessment/results/report_summary/:result_id
HTTP URL Parameters:
result_id – assessment result ID.
Response: JSON array

{

 result_id,

 type = […],

 report_nodes = [

 {

 node_type,

 node_html

 },

 …

]

}

result_id – assessment result ID.
type – a JSON array, list of assessment types

[bai|childrens|cognitive|disc15|disc24|perceptual|sgi|teams|values].
report_nodes – the list of summary report HTML nodes:
 node_type – node type [bai|childrens|cognitive|disc15|disc24|

perceptual|sgi|teams|values];
 node_html – HTML fragment that corresponds to the node.

24

Client-Side Assessments

Method: POST
Description: Initializes assessment passage by external user. This method creates new record for

assessment test taken on client side. The method does not cause creation of fully-fledged
PK3 user that can access PK3 site. Instead, it creates special record that holds information
about client-side authenticated user.

Route: /app/api/assessment/client_side/initialize
HTTP Form Parameters:
user_external_id – client-side user identifier (email, GUID, etc.). Must be unique within the PK3

account the user is bound to.
user_display_name – [optional] the user display name to be used on report generation. By default, user

external ID is used as display name.
account_id – [optional] the PK3 account the user is bound to. By default, the user is bound to API caller

account.
assessment_id – assessment ID.
tags – [optional] JSON array

{

 tag_list = […]

}

tag_lists – list of tags to be associated with the user record. If the user already exists, the list of tags
will be merged with the list of existing tags for this user. New account tags are created if
needed.

Response: JSON array
{

 result_id

}

result_id – assessment result ID (assessment passage tracking ID).

25

Method: PUT
Description: Saves user responses to questions on the assessment test page for the test taken on client

side. The assessment passage must be initialized beforehand via POST
/app/api/assessment/client_side/initialize call.

Route: /app/api/assessment/client_side/response
HTTP Form Parameters:
result _id – assessment result ID (assessment passage tracking ID).
page_id – assessment page ID.
response – JSON array

[

 {

 item_id,

 options = [

 { value, order },…

]

 },

 …

]

item_id – page item ID.
options – For BAI, COGNITIVE, DISC 15, DISC 24, TEAMS, VALUES assessments – the answer options

as ordered by the user:
 value – answer value code;
 order – 1-based index of answers as ordered by the user (for BAI assessments valid order

values are in the range [1; 6], for TEAMS assessments valid order values are in the range [1;
5], for COGNITIVE, DISC 15, DISC 24 and VALUES assessments valid order values are in the
range [1; 4]).

 For CHILDREN’S, PERCEPTUAL and SGI assessments – the answer option chosen by the
user:

 value – answer value code;
 order – must be set to 1.

26

Method: GET
Description: Returns information about statuses of client-side assessment tests available for the API

caller account or one of its subaccounts. Assessment test status records are sorted by
assessment start timestamp, the latest record is first.

Route: /app/api/assessment/client_side/results/:account_id?
 [user_external_id=:user_external_id] [&max_records=:max_records]

[&start_record=:start_record] [&date_since=:date_since][&tags=:tags]
HTTP URL Parameters:
account_id – account ID.
HTTP GET Parameters:
user_external_id – [optional] client-side user identifier. Filters assessment results, returns the results

available for given user.
max_records – [optional] the maximum number of status records returned per request. By default, the

maximum number of records is set to 10000. You cannot return more than 10000 status
records per request.

start_record – [optional] index of the first record. By default, index of the first record is 0.
date_since – [optional] [yyyy-mm-dd] filters out status records older than specified date.
tags – [optional] JSON array

{

 tag_list = […]

}

tag_lists – list of tags to apply as a filter. Filters assessment results, returns the results for users
associated with at least one of the listed tags.

Response: JSON array
{

 total_record_number,

 results = [

 {

 id,

 user_external_id,

 assessment_id

 date_completed,

 date_started,

 status,

 next_page_id,

 pages_completed = [

 { page_id, completed_on }, …

]

 },

 …

]

}

total_record_number – total number of assessment test results found that match the filters.

27

results – JSON array of assessment test status records:
 id – assessment result ID.
 user_external_id – client-side identifier of the user that took the assessment.
 assessment_id – assessment ID.
 date_completed – [yyyy-mm-dd hh:mm:ss] assessment completion timestamp.
 date_started – [yyyy-mm-dd hh:mm:ss] assessment start timestamp.
 status – assessment completion status [Completed | In Progress].
 next_page_id – page ID of the next assessment test page to respond.
 page_id – page ID of the completed test page (test pages with user responses).
 completed_on – [yyyy-mm-dd hh:mm:ss] page completion timestamp.

28

Method: GET
Description: Obtains calculated raw scores for given client-side assessment test.
Route: /app/api/assessment/client_side/results/calculate/:result_id
HTTP URL Parameters:
result_id – assessment result ID.
Response: JSON array

{

 result_id,

 type = […],

 bai = {

 score_I,

 score_S,

 score_P,

 score_E,

 score_A,

 score_K,

 primary_keyword,

 secondary_keyword

 },

 childrens = {

 score_D,

 score_I,

 score_S,

 score_C,

 intensity,

 style

 },

 cognitive = {

 score_L,

 score_I,

 score_T,

 score_E,

 primary_keyword,

 secondary_keyword

 },

 disc15 = {

 score_D,

 score_I,

 score_S,

 score_C,

 intensity,

 style

 },

 disc24 = {

 graph1_D,

 graph1_I,

 graph1_S,

 graph1_C,

 graph2_D,

 graph2_I,

 graph2_S,

 graph2_C,

29

 graph3_D,

 graph3_I,

 graph3_S,

 graph3_C,

 intensity,

 style

 },

 perceptual = {

 score_A,

 score_V,

 score_K,

 primary_keyword,

 secondary_keyword

 },

 sgi = {

 score_Administration,

 score_Apostle,

 score_Craftsman,

 score_Discernment,

 score_Encouragement,

 score_Evangelist,

 score_Faith,

 score_Giving,

 score_Healing,

 score_Helps,

 score_Intercession,

 score_Knowledge,

 score_Leadership,

 score_Mercy,

 score_Music,

 score_Pastor,

 score_Prophet,

 score_Serving,

 score_Teacher,

 score_Wisdom,

 absent_gifts = […],

 present_gifts = […]

 },

 teams = {

 score_T,

 score_E,

 score_A,

 score_M,

 score_S,

 primary_keyword,

 secondary_keyword

 },

 values = {

 score_L,

 score_E,

 score_P,

 score_J,

 primary_keyword,

 secondary_keyword

30

 }

}

result_id – assessment result ID.
type – a JSON array, list of assessment types

[bai|childrens|cognitive|disc15|disc24|perceptual|sgi|teams|values].
bai – section contains ‘BAI’ assessment results:
 score_I – the “Inner Awareness” score;
 score_S – the “Social/Humanitarian” score;
 score_P – the “Political/EmPowerment” score;
 score_E – the “Economic” score;
 score_A – the “Artistic” score;
 score_K – the “Knowledge” score;
 primary_keyword – primary ‘BAI’ style;
 secondary_keyword – secondary ‘BAI’ style.
childrens – section contains ‘CHILDREN’S’ assessment results:
 score_D – the “D” score;
 score_I – the “I” score;
 score_S – the “S” score;
 score_C – the “C” score;
 intensity – DISC code;
 style – calculated personality style.
cognitive – section contains ‘COGNITIVE’ assessment results:
 score_L – the “Literal” score;
 score_I – the “Intuitive” score;
 score_T – the “Theoretical” score;
 score_E – the “Experimental” score;
 primary_keyword – primary ‘COGNITIVE’ style;
 secondary_keyword – secondary ‘COGNITIVE’ style.
disc15 – section contains ‘DISC 15’ assessment results:
 score_D – the “D” score;
 score_I – the “I” score;
 score_S – the “S” score;
 score_C – the “C” score;
 intensity – DISC code;
 style – calculated personality style.
disc24 – section contains ‘DISC 24’ assessment results:
 graph1_D – graph #1 “D” score;
 graph1_I – graph #1 “I” score;
 graph1_S – graph #1 “S” score;
 graph1_C – graph #1 “C” score;
 graph2_D – graph #2 “D” score;
 graph2_I – graph #2 “I” score;
 graph2_S – graph #2 “S” score;
 graph2_C – graph #2 “C” score;
 graph3_D – graph #3 “D” score;
 graph3_I – graph #3 “I” score;

31

 graph3_S – graph #3 “S” score;
 graph3_C – graph #3 “C” score;
 intensity – DISC code;
 style – calculated personality style.
perceptual – section contains ‘PERCEPTUAL’ assessment results:
 score_A – the “Auditory” score;
 score_V – the “Visual” score;
 score_K – the “Kinesthetic” score;
 primary_keyword – primary ‘PERCEPTUAL’ style;
 secondary_keyword – secondary ‘PERCEPTUAL’ style.
sgi – section contains ‘SGI’ assessment results:
 score_Administration – the “Administration” score;
 score_Apostle – the “Apostle” score;
 score_Craftsman – the “Craftsman” score;
 score_Discernment – the “Discernment” score;
 score_Encouragement – the “Encouragement” score;
 score_Evangelist – the “Evangelist” score;
 score_Faith – the “Faith” score;
 score_Giving – the “Giving” score;
 score_Healing – the “Healing” score;
 score_Helps – the “Helps” score;
 score_Intercession – the “Intercession” score;
 score_Knowledge – the “Knowledge” score;
 score_Leadership – the “Leadership” score;
 score_Mercy – the “Mercy” score;
 score_Music – the “Music” score;
 score_Pastor – the “Pastor” score;
 score_Prophet – the “Prophet” score;
 score_Serving – the “Serving” score;
 score_Teacher – the “Teacher” score;
 score_Wisdom – the “Wisdom” score;
 absent_gifts – an array, list of absent gifts;
 present_gifts – an array, list of present gifts.
teams – section contains ‘TEAMS’ assessment results:
 score_T – the “Theorist” score;
 score_E – the “Executor” score;
 score_A – the “Analyst” score;
 score_M – the “Manager” score;
 score_S – the “Strategist” score;
 primary_keyword – primary ‘TEAMS’ style;
 secondary_keyword – secondary ‘TEAMS’ style.
values – section contains ‘VALUES’ assessment results:
 score_L – the “Loyalty” score;
 score_E – the “Equality” score;
 score_P – the “Personal Freedom” score;

32

 score_J – the “Justice” score;
 primary_keyword – primary ‘VALUES’ style;
 secondary_keyword – secondary ‘VALUES’ style.

Method: GET
Description: Downloads full PDF report for completed client-side assessment test.
Route: /app/api/assessment/client_side/results/download/:result_id
HTTP URL Parameters:
result_id – assessment result ID.
Response: Binary stream for PDF report. Content-Type: application/pdf. Content-Disposition:

attachment.

Method: GET
Description: Downloads PDF report (graphs only) for completed client-side assessment test.
Route: /app/api/assessment/client_side/results/download_graph/:result_id
HTTP URL Parameters:
result_id – assessment result ID.
Response: Binary stream for PDF report. Content-Type: application/pdf. Content-Disposition:

attachment.

Method: GET
Description: Returns HTML nodes of “summary” report for completed client-side assessment test.
Route: /app/api/assessment/client_side/results/report_summary/:result_id
HTTP URL Parameters:
result_id – assessment result ID.
Response: JSON array

{

 result_id,

 type = […],

 report_nodes = [

 {

 node_type,

 node_html

 },

 …

]

}

result_id – assessment result ID.
type – a JSON array, list of assessment types

[bai|childrens|cognitive|disc15|disc24|perceptual|sgi|teams|values].
report_nodes – the list of summary report HTML nodes:
 node_type – node type [disc24|values|teams];
 node_html – HTML fragment that corresponds to the node.

33

Method: GET
Description: Retrieves list of tags associated with existing external user.
Route: /app/api/assessment/client_side/user/tags?user_external_id=:user_external_id

[&account_id=:account_id]
HTTP GET Parameters:
user_external_id – client-side identifier of the user.
account_id – [optional] the PK3 account the user is bound to. If not specified, the user is looked up in the

API caller account.
Response: JSON array

{

 tag_list = […]

}

tag_list – list of tags associated with the user record within given account.

Method: POST
Description: Associates tags with the existing external user. New account tags are created if needed.
Route: /app/api/assessment/client_side/user/tags
HTTP Form Parameters:
user_external_id – client-side identifier of the user.
account_id – [optional] the PK3 account the user is bound to. If not specified, the user is looked up in the

API caller account.
tags – JSON array

{

 tag_list = […]

}

tag_lists – list of tags to be associated with the user record.
Response: JSON array

{

 tags_affected

}

tags_affected – number of listed tags associated with the user.

34

Method: DELETE
Description: Removes association of given tags with the existing external user.
Route: /app/api/assessment/client_side/user/tags?user_external_id=:user_external_id

[&account_id=:account_id]&tags=:tags
HTTP GET Parameters:
user_external_id – client-side identifier of the user.
account_id – [optional] the PK3 account the user is bound to. If not specified, the user is looked up in the

API caller account.
tags – JSON array

{

 tag_list = […]

}

tag_list – list of tags to be removed from association with the user record.
Response: JSON array

{

 tags_affected

}

tags_affected – number of listed tags removed from association with the user.

35

Benchmarking

Method: GET
Description: Returns list of benchmark subscriptions available for the API caller account or one of its

subaccounts.
Route: /app/api/benchmark/list?[account_id=:account_id]

[&assessment_types=:assessment_types][&active_only=:active_only]
HTTP GET Parameters:
account_id – [optional] the PK3 account ID. If not specified, the method lists benchmark subscriptions

available for the API caller account.
assessment_types – [optional] JSON array

{

 assessment_type_list = […]

}

assessment_type_list – list of assessment types. If specified, the method returns only benchmarks
compatible with one of the listed assessment types. Supported assessment types are
“BAI”, “CHILDRENS”, “COGNITIVE”, “DISC 15”, “DISC 24”, “PERCEPTUAL”, “TEAMS” and
“VALUES”.

active_only – [optional] the flag tells the server to return active benchmark subscriptions only. Any non-
zero flag value is interpreted as “true”. By default, the method lists active benchmark
subscriptions and subscriptions for future periods.

Response: JSON array
[

 {

 benchmark_id,

 name,

 description,

 types = […],

 starts_on,

 expires_on,

 owner_account_id

 },

 …

]

benchmark_id – benchmark ID.
name – benchmark name.
description – benchmark description.
types – list of assessment types this benchmark is compatible with.
starts_on – [yyyy-mm-dd] the day benchmark subscription starts on.
expires_on – [yyyy-mm-dd] the day benchmark subscription expires (left empty, if subscription lasts

indefinitely).
owner_account_id – ID of the account that owns this benchmark (for account-specific benchmarks).

36

Method: GET
Description: Returns information about dataset of assessment test results compatible by type with

given benchmark. The results returned are grouped by the assessment.
Route: /app/api/benchmark/available_assessment_tests/:benchmark_id?

[account_id=:account_id][&tags=:tags]
HTTP GET Parameters:
benchmark_id – the benchmark ID.
account_id – [optional] the PK3 account ID. If not specified, the API caller account is assumed.
tags – [optional] JSON array

{

 tag_list = […]

}

tag_list – list of tags to filter assessment test results dataset by.
Response: JSON array

[

 {

 assessment_id,

 types = […],

 amount

 },

 …

]

assessment_id – assessment ID.
types – list of assessment types.
amount – number of assessment test results compatible by type with given benchmark.

Method: POST
Description: Pre-calculates benchmark for given dataset of assessment test results.
Route: /app/api/benchmark/calculate
HTTP Form Parameters:
account_id – [optional] the PK3 account ID. If not specified, the API caller account is assumed.
benchmark_id – ID of the benchmark to apply.
assessment_id – assessment ID. The benchmark is applied to test results of the given assessment.
tags – [optional] JSON array

{

 tag_list = […]

}

tag_lists – list of tags to filter assessment test results dataset by.
Response: JSON array

{

 config_id

}

config_id – configuration ID of pre-calculated benchmark (tracking ID for pre-calculated benchmark).

37

Method: GET
Description: Returns list of pre-calculated benchmarks for given account. List of pre-calculated

benchmarks is sorted by date and time of calculation, the latest records first.
Route: GET /app/api/benchmark/calculated/list?[account_id=:account_id]

[&max_records=:max_records][&start_record=:start_record]
HTTP GET Parameters:
account_id – [optional] the PK3 account ID. If not specified, the API caller account is assumed.
max_records – [optional] the maximum number of records returned per request. By default, the

maximum number of records is set to 100. You cannot return more than 1000 records per
request.

start_record – [optional] index of the first record. By default, index of the first record is 0.
Response: JSON array

{

 total_record_number,

 results = [

 {

 config_id,

 benchmark_id,

 assessment_id,

 tag_list = […],

 created_on,

 created_by

 },

 …

]

}

total_record_number – total number of pre-calculated benchmark records found that match the filters.
results – JSON array of pre-calculated benchmark records:

 config_id – configuration ID of pre-calculated benchmark.
 benchmark_id – benchmark ID.
 assessment_id – assessment ID. The benchmark was applied to test results of the given

assessment.
 tag_list – list of tags that was used to filter assessment test results dataset.
 created_on – [yyyy-mm-dd hh:mm:ss] date and time when the calculation was carried

out.
 created_by – ID of the user that initiated the calculation (‘API’ for benchmarks pre-

calculated via API call).

38

Method: GET
Description: Returns user results for given pre-calculated benchmark. User benchmark result records

are sorted by benchmark criteria total match count, the records with highest match count
first.

Route: /app/api/benchmark/calculated/results/:config_id?[max_records=:max_records]
[&start_record=:start_record][&tags=:tags]

HTTP URL Parameters:
config_id – configuration ID of pre-calculated benchmark (pre-calculated benchmark tracking ID).
HTTP GET Parameters:
max_records – [optional] the maximum number of user benchmark result records returned per request.

By default, the maximum number of records is set to 100. You cannot return more than
1000 status records per request.

start_record – [optional] index of the first record. By default, index of the first record is 0.
tags – [optional] JSON array

{

 tag_list = […]

}

tag_lists – list of tags to apply as a filter. Filters user benchmark results, returns the results for users
associated with at least one of the listed tags.

Response: JSON array
{

 total_record_number,

 results = [

 {

 id,

 user_id,

 user_external_id,

 user_name,

 tag_list = […],

 bai_match,

 childrens_match,

 cognitive_match,

 disc15_match,

 disc24_match,

 perceptual_match,

 teams_match,

 values_match,

 total_match,

 date_completed

 },

 …

]

}

total_record_number – total number of user benchmark result records found that match the filters.

39

results – JSON array of benchmark result records:
 id – user benchmark result ID.

 user_ id – PK3 identifier of the user that took the assessment (left empty for
external users).

 user_external_id – for external users, client-side identifier of the user that took the
assessment (left empty for PK3 users).

 user_name – name of the user that took the assessment.
 tag_list – list of tags associated with the user.
 bai_match – “BAI” benchmark criteria match count.
 childrens_match – “CHILDRENS” benchmark criteria match count.
 cognitive_match – “COGNITIVE” benchmark criteria match count.
 disc15_match – “DISC 15” benchmark criteria match count.
 disc24_match – “DISC 24” benchmark criteria match count.
 perceptual_match – “PERCEPTUAL” benchmark criteria match count.
 teams_match – “TEAMS” benchmark criteria match count.
 values_match – “VALUES” benchmark criteria match count.
 total_match – benchmark criteria total match count.
 date_completed – [yyyy-mm-dd hh:mm:ss] assessment completion timestamp.

Method: GET
Description: Downloads simple PDF report on user benchmark result for pre-calculated benchmark.
Route: /app/api/benchmark/calculated/report/simple/:benchmark_result_id
HTTP URL Parameters:
benchmark_result_id – user benchmark result ID.
Response: Binary stream for PDF report. Content-Type: application/pdf. Content-Disposition:

attachment.

Method: GET
Description: Downloads full PDF report on user benchmark result for pre-calculated benchmark.
Route: /app/api/benchmark/calculated/report/full/:benchmark_result_id
HTTP URL Parameters:
benchmark_result_id – user benchmark result ID.
Response: Binary stream for PDF report. Content-Type: application/pdf. Content-Disposition:

attachment.

40

Method: GET
Description: Returns benchmark match scores for given benchmark applied to specified completed

assessment test.
Route: /app/api/benchmark/apply/:benchmark_id/:result_id
HTTP URL Parameters:
benchmark_id – benchmark ID.
result_id – assessment result ID.
Response: JSON array

{

 bai_match,

 childrens_match,

 cognitive_match,

 disc15_match,

 disc24_match,

 perceptual_match,

 teams_match,

 values_match,

 total_match

}

bai_match – “BAI” benchmark criteria match count.
childrens_match – “CHILDRENS” benchmark criteria match count.
cognitive_match – “COGNITIVE” benchmark criteria match count.
disc15_match – “DISC 15” benchmark criteria match count.
disc24_match – “DISC 24” benchmark criteria match count.
perceptual_match – “PERCEPTUAL” benchmark criteria match count.
teams_match – “TEAMS” benchmark criteria match count.
values_match – “VALUES” benchmark criteria match count.
total_match – benchmark criteria total match count.

Method: GET
Description: Downloads simple PDF report on given benchmark applied to specified completed

assessment test.
Route: /app/api/benchmark/apply/report/simple/:benchmark_id/:result_id
HTTP URL Parameters:
benchmark_id – benchmark ID.
result_id – assessment result ID.
Response: Binary stream for PDF report. Content-Type: application/pdf. Content-Disposition:

attachment.

41

Method: GET
Description: Downloads full PDF report on given benchmark applied to specified completed assessment

test.
Route: /app/api/benchmark/apply/report/full/:benchmark_id/:result_id
HTTP URL Parameters:
benchmark_id – benchmark ID.
result_id – assessment result ID.
Response: Binary stream for PDF report. Content-Type: application/pdf. Content-Disposition:

attachment.

Method: GET
Description: Returns benchmark match scores for given benchmark applied to specified completed

client-side assessment test.
Route: /app/api/benchmark/apply/client_side/:benchmark_id/:result_id
HTTP URL Parameters:
benchmark_id – benchmark ID.
result_id – assessment result ID.
Response: JSON array

{

 bai_match,

 childrens_match,

 cognitive_match,

 disc15_match,

 disc24_match,

 perceptual_match,

 teams_match,

 values_match,

 total_match

}

bai_match – “BAI” benchmark criteria match count.
childrens_match – “CHILDRENS” benchmark criteria match count.
cognitive_match – “COGNITIVE” benchmark criteria match count.
disc15_match – “DISC 15” benchmark criteria match count.
disc24_match – “DISC 24” benchmark criteria match count.
perceptual_match – “PERCEPTUAL” benchmark criteria match count.
teams_match – “TEAMS” benchmark criteria match count.
values_match – “VALUES” benchmark criteria match count.
total_match – benchmark criteria total match count.

42

Method: GET
Description: Downloads simple PDF report on given benchmark applied to specified completed client-

side assessment test.
Route: /app/api/benchmark/apply/client_side/report/simple/:benchmark_id/:result_id
HTTP URL Parameters:
benchmark_id – benchmark ID.
result_id – assessment result ID.
Response: Binary stream for PDF report. Content-Type: application/pdf. Content-Disposition:

attachment.

Method: GET
Description: Downloads full PDF report on given benchmark applied to specified completed client-side

assessment test.
Route: /app/api/benchmark/apply/client_side/report/full/:benchmark_id/:result_id
HTTP URL Parameters:
benchmark_id – benchmark ID.
result_id – assessment result ID.
Response: Binary stream for PDF report. Content-Type: application/pdf. Content-Disposition:

attachment.

43

Error Handling

Response HTTP status code 200 tells the client requested operation is completed successfully. HTTP
status code 4XX or 5XX tells the client requested operation has failed. Error message is sent as part of
server response.

Generic error messages are sent when server cannot proceed with request authentication.

Status Code: 400
Message: Invalid request: bad request timestamp
Description: 'X-Time' header not found in the request or bad request timestamp provided.

Status Code: 400
Message: Invalid request: public key not specified
Description: 'X-Public' header not found in the request.

Status Code: 401
Message: Invalid request: public key unknown
Description: The public key provided in 'X-Public' header is unknown.

Status Code: 400
Message: Invalid request: bad request hash
Description: 'X-Hash' header not found in the request or the hash value provided does not match the

request body.

Status Code: 500
Message: Server error: cannot proceed with request authentication
Description: Internal server error during request authentication.

Beyond the generic errors above, the operation specific error codes 4XX, 5XX and messages can be
returned.

PUT /app/api/account

Status Code: 400
Message: Account data not valid
Description: Unable to update account attributes with values provided in the request.

Status Code: 403
Message: Not allowed to update specified account
Description: The caller does not have rights to update specified account (the account specified in the

request is not a caller’s account or subaccount).

44

POST /app/api/account/meta

Status Code: 403
Message: Meta data key already exists or is reserved for system use
Description: Meta data key specified in the request already exists or is reserved for system use.

Status Code: 403
Message: Not allowed to add meta data to the account specified in the request
Description: The caller does not have rights to add meta data to the specified account (the account

specified in the request is not a caller’s account or subaccount).

GET /app/api/account/:account_id/tags

Status Code: 403
Message: Not allowed to retrieve information about the account specified in the request
Description: The caller does not have rights to retrieve information about specified account (the

account specified in the request is not a caller’s account or subaccount).

POST /app/api/account/:account_id/tags

Status Code: 400
Message: Tags not specified
Description: The tags parameter not found, not a JSON array or contains an empty list of tags.

Status Code: 403
Message: Not allowed to create tags for the account specified in the request
Description: The caller does not have rights to create tags for the specified account (the account

specified in the request is not a caller’s account or subaccount).

PUT /app/api/account/:account_id/tags

Status Code: 400
Message: Tags not specified
Description: The tags parameter not found, not a JSON array or contains an empty list of tags.

Status Code: 403
Message: Not allowed to edit tags for the account specified in the request
Description: The caller does not have rights to edit tags for the specified account (the account specified

in the request is not a caller’s account or subaccount).

45

DELETE /app/api/account/:account_id/tags

Status Code: 400
Message: Tags not specified
Description: The tags parameter not found, not a JSON array or contains an empty list of tags.

Status Code: 403
Message: Not allowed to delete tags from the account specified in the request
Description: The caller does not have rights to delete tags from the specified account (the account

specified in the request is not a caller’s account or subaccount).

POST /app/api/subaccounts

Status Code: 400
Message: Sub-account data not valid
Description: Unable to create subaccount with attributes provided in the request.

Status Code: 403
Message: Not allowed to add sub-account to the account specified in the request
Description: The caller does not have rights to create subaccount in the specified account (the account

specified in the request is not a caller’s account or subaccount).

PUT /app/api/subaccounts

Status Code: 400
Message: Sub-account data not valid
Description: Unable to update subaccount with attributes provided in the request.

Status Code: 403
Message: Not allowed to update sub-account specified in the request
Description: The caller does not have rights to update specified subaccount (the account specified in

the request is not a caller’s subaccount).

DELETE /app/api/subaccounts/:account_id/

Status Code: 400
Message: Unable to delete sub-account (sub-account does not exist)
Description: Subaccount specified in the request does not exist or cannot be deleted (constrained by

the existing data linked to the account in the database).

Status Code: 403
Message: Not allowed to delete sub-account specified in the request
Description: The caller does not have rights to delete specified subaccount (the account specified in the

request is not a caller’s subaccount).

46

GET /app/api/account/:account_id/users/

Status Code: 403
Message: Not allowed to get the list of users for the account specified in the request
Description: The caller does not have rights to list users in the account (the account specified in the

request is not a caller’s account or subaccount).

POST /app/api/account/users/

Status Code: 400
Message: User data not valid
Description: Unable to create new user with attributes provided in the request (user with given email

already exists).

Status Code: 403
Message: Not allowed to add new user to the account specified in the request
Description: The caller does not have rights to add users to the specified account (the account specified

in the request is not a caller’s account or subaccount).

PUT /app/api/account/users/

Status Code: 400
Message: User data not valid or the user is not a member of the account specified
Description: User membership attributes are not valid or the user is not a member of the account

specified.

Status Code: 403
Message: Not allowed to modify user in the account specified in the request
Description: The caller does not have rights to modify membership data for the account (the account

specified in the request is not a caller’s account or subaccount).

DELETE /app/api/account/:account_id/users/:user_id

Status Code: 400
Message: User does not exist or is not a member of the account specified
Description: User with given ID does not exist or is not a member of the account specified.

Status Code: 403
Message: Not allowed to remove users from the account specified in the request
Description: The caller does not have rights to modify membership of the account (the account

specified in the request is not a caller’s account or subaccount).

47

GET /app/api/user/tags/:account_id/:user_id

Status Code: 400
Message: User does not exist or is not a member of the account specified
Description: User with given ID does not exist or is not a member of the account specified.

Status Code: 403
Message: Not allowed to list tags for the user specified in the request
Description: The caller does not have rights to list tags for users of the given account (the account

specified in the request is not a caller’s account or subaccount).

POST /app/api/user/tags/:account_id/:user_id

Status Code: 400
Message: Tags not specified
Description: The tags parameter not found, not a JSON array or contains an empty list of tags.

Status Code: 400
Message: User does not exist or is not a member of the account specified
Description: User with given ID does not exist or is not a member of the account specified.

Status Code: 403
Message: Not allowed to add tags to the user specified in the request
Description: The caller does not have rights to modify tags for users of the given account (the account

specified in the request is not a caller’s account or subaccount).

DELETE /app/api/user/tags/:account_id/:user_id

Status Code: 400
Message: Tags not specified
Description: The tags parameter not found, not a JSON array or contains an empty list of tags.

Status Code: 400
Message: User does not exist or is not a member of the account specified
Description: User with given ID does not exist or is not a member of the account specified.

Status Code: 403
Message: Not allowed to drop tags for the user specified in the request
Description: The caller does not have rights to modify tags for users of the given account (the account

specified in the request is not a caller’s account or subaccount).

48

POST /app/api/account/invite/

Status Code: 400
Message: Assessment ID not specified
Description: The participant flag is set, but the assessment_id parameter not found or is set to 0.

Status Code: 400
Message: Email address not specified
Description: The email parameter not found or is an empty string.

Status Code: 402
Message: You have to purchase more assessments
Description: The caller does not have available assessment passes for given assessment to transfer to

the invitee.

Status Code: 403
Message: Not allowed to create invite URL for the account specified in the request
Description: The caller does not have rights to create invite URL on behalf of the specified account (the

account specified in the request is not a caller’s account or subaccount).

GET /app/api/assessments/:account_id

Status Code: 403
Message: Not allowed to get the list of assessments for the account specified in the request
Description: The caller does not have rights to list assessments for the account specified (the account

specified in the request is not a caller’s account or subaccount).

49

PUT /app/api/assessment/transfer

Status Code: 400
Message: Sender and recipient accounts are the same
Description: The sender and recipient accounts specified in the request are the same.

Status Code: 400
Message: Number of assessments must be a positive value
Description: Number of assessments to transfer must be a positive value.

Status Code: 403
Message: Not allowed to transfer assessments from the account specified
Description: The caller does not have rights to make an assessment transfer from the account specified

(the sender account is not a caller’s account or subaccount).

Status Code: 403
Message: Not allowed to transfer assessments to the account specified
Description: The caller does not have rights to make an assessment transfer to the account specified

(the recipient account is not a caller’s account or subaccount).

Status Code: 403
Message: The sender account does not have enough assessments to transfer
Description: The sender account does not have enough available assessment passes for given

assessment to transfer.

Status Code: 500
Message: Unable to complete assessments transfer
Description: The server has failed to complete assessment transfer transaction.

GET /app/api/assessment/:assessment_id

Status Code: 403
Message: Assessment does not exist or not allowed to get details of the assessment specified
Description: The caller does not have rights to get detailed information about given assessment (does

not have purchase record for the assessment) or the assessment does not exist.

DELETE /app/api/assessment/:assessment_id

Status Code: 403
Message: Not allowed to delete the assessment
Description: Current version of API rejects requests to delete the assessment.

50

GET /app/api/assessment/core/:assessment_id

Status Code: 403
Message: Assessment does not exist
Description: Assessment with specified ID does not exist.

GET /app/api/assessment/pages/:assessment_id

Status Code: 403
Message: Assessment does not exist
Description: Assessment with specified ID does not exist.

GET /app/api/assessment/results/:account_id

Status Code: 403
Message: Not allowed to get results for the account specified
Description: The caller does not have rights to list assessment results for the account specified (the

account specified in the request is not a caller’s account or subaccount).

GET /app/api/assessment/results/calculate/:result_id

Status Code: 400
Message: Assessment not complete
Description: The system cannot calculate results of the unfinished assessment.

Status Code: 403
Message: Result does not exist or not allowed to calculate scores for the result specified
Description: The caller does not have rights to view results of the assessment test (the user who took

the test is not a member of the caller’s account or subaccount) or the result with specified
ID does not exist.

51

GET /app/api/assessment/results/download/:result_id

Status Code: 400
Message: Assessment not complete
Description: The system cannot calculate results of the unfinished assessment.

Status Code: 403
Message: Result does not exist or not allowed to get PDF report for the result specified
Description: The caller does not have rights to view results of the assessment test (the user who took

the test is not a member of the caller’s account or subaccount) or the result with specified
ID does not exist.

Status Code: 500
Message: Unable to load result details
Description: Unable to load result details – internal server error.

GET /app/api/assessment/results/download_graph/:result_id

Status Code: 400
Message: Assessment not complete
Description: The system cannot calculate results of the unfinished assessment.

Status Code: 403
Message: Result does not exist or not allowed to get PDF report for the result specified
Description: The caller does not have rights to view results of the assessment test (the user who took

the test is not a member of the caller’s account or subaccount) or the result with specified
ID does not exist.

Status Code: 500
Message: Unable to load result details
Description: Unable to load result details – internal server error.

GET /app/api/assessment/results/report_summary/:result_id

Status Code: 400
Message: Assessment not complete
Description: The system cannot calculate results of the unfinished assessment.

Status Code: 403
Message: Result does not exist or not allowed to get report summary for the result specified
Description: The caller does not have rights to view results of the assessment test (the user who took

the test is not a member of the caller’s account or subaccount) or the result with specified
ID does not exist.

52

POST /app/api/assessment/client_side/initialize

Status Code: 400
Message: Assessment ID not specified
Description: The assessment_id parameter not found or is set to 0.

Status Code: 400
Message: User external ID not specified
Description: The user_external_id parameter not found or is an empty string.

Status Code: 402
Message: You have to purchase more assessments
Description: The caller’s account (or account specified by account_id parameter) does not have

available passes for given assessment.

Status Code: 403
Message: Not allowed to initialize assessment passage for the account specified in the request
Description: The caller does not have rights to initialize assessment passage on behalf of the specified

account (the account specified in the request is not a caller’s account or subaccount).

Status Code: 500
Message: Unable to initialize assessment passage
Description: The server has failed to initialize assessment passage (internal server error).

53

PUT /app/api/assessment/client_side/response

Status Code: 400
Message: Invalid assessment page ID
Description: The page_id parameter not found or page does not belong to the current assessment.

Status Code: 400
Message: User response is already saved
Description: The user response to questions on given assessment test page is already saved.

Status Code: 400
Message: Unrecognized user response format
Description: The response parameter not found or server is unable to parse response JSON.

Status Code: 403
Message: Result does not exist or not allowed to save user responses for the result specified
Description: The caller does not have rights to access the result specified (the user who is taking the

test is not associated with the caller’s account or subaccount) or the result with specified
ID does not exist.

Status Code: 500
Message: Unable to save user response
Description: The server has failed to save user response to assessment questions (internal server error).

GET /app/api/assessment/client_side/results/:account_id

Status Code: 403
Message: Not allowed to get results for the account specified
Description: The caller does not have rights to list client-side assessment results for the account

specified (the account specified in the request is not a caller’s account or subaccount).

GET /app/api/assessment/client_side/results/calculate/:result_id

Status Code: 400
Message: Assessment not complete
Description: The system cannot calculate results of the unfinished assessment.

Status Code: 403
Message: Result does not exist or not allowed to calculate scores for the result specified
Description: The caller does not have rights to view results of the client-side assessment test (the user

who took the test is not associated with the caller’s account or subaccount) or the result
with specified ID does not exist.

54

GET /app/api/assessment/client_side/results/download/:result_id

Status Code: 400
Message: Assessment not complete
Description: The system cannot calculate results of the unfinished assessment.

Status Code: 403
Message: Result does not exist or not allowed to get PDF report for the result specified
Description: The caller does not have rights to view results of the client-side assessment test (the user

who took the test is not associated with the caller’s account or subaccount) or the result
with specified ID does not exist.

Status Code: 500
Message: Unable to load result details
Description: Unable to load result details – internal server error.

GET /app/api/assessment/client_side/results/download_graph/:result_id

Status Code: 400
Message: Assessment not complete
Description: The system cannot calculate results of the unfinished assessment.

Status Code: 403
Message: Result does not exist or not allowed to get PDF report for the result specified
Description: The caller does not have rights to view results of the client-side assessment test (the user

who took the test is not associated with the caller’s account or subaccount) or the result
with specified ID does not exist.

Status Code: 500
Message: Unable to load result details
Description: Unable to load result details – internal server error.

GET /app/api/assessment/client_side/results/report_summary/:result_id

Status Code: 400
Message: Assessment not complete
Description: The system cannot calculate results of the unfinished assessment.

Status Code: 403
Message: Result does not exist or not allowed to get report summary for the result specified
Description: The caller does not have rights to view results of the client-side assessment test (the user

who took the test is not associated with the caller’s account or subaccount) or the result
with specified ID does not exist.

55

GET /app/api/assessment/client_side/user/tags

Status Code: 400
Message: User external ID not specified
Description: The user_external_id parameter not found.

Status Code: 400
Message: User not found
Description: The user with specified external ID does not exist in the given account.

Status Code: 403
Message: Not allowed to list tags for the user specified in the request
Description: The caller does not have rights to list tags for external user of the given account (the

account specified in the request is not a caller’s account or subaccount).

POST /app/api/assessment/client_side/user/tags

Status Code: 400
Message: Tags not specified
Description: The tags parameter not found, not a JSON array or contains an empty list of tags.

Status Code: 400
Message: User external ID not specified
Description: The user_external_id parameter not found.

Status Code: 400
Message: User not found
Description: The user with specified external ID does not exist in the given account.

Status Code: 403
Message: Not allowed to add tags to the user specified in the request
Description: The caller does not have rights to modify tags for external user of the given account (the

account specified in the request is not a caller’s account or subaccount).

56

DELETE /app/api/assessment/client_side/user/tags

Status Code: 400
Message: Tags not specified
Description: The tags parameter not found, not a JSON array or contains an empty list of tags.

Status Code: 400
Message: User external ID not specified
Description: The user_external_id parameter not found.

Status Code: 400
Message: User not found
Description: The user with specified external ID does not exist in the given account.

Status Code: 403
Message: Not allowed to drop tags for the user specified in the request
Description: The caller does not have rights to modify tags for external user of the given account (the

account specified in the request is not a caller’s account or subaccount).

GET /app/api/benchmark/list

Status Code: 403
Message: Not allowed to retrieve information about the account specified in the request
Description: The caller does not have rights to retrieve information about specified account (the

account specified in the request is not a caller’s account or subaccount).

GET /app/api/benchmark/available_assessment_tests/:benchmark_id

Status Code: 400
Message: Benchmark does not exist or not defined properly
Description: The benchmark with specified ID does not exist or not defined properly in PK3.

Status Code: 403
Message: Not allowed to retrieve information about the account specified in the request
Description: The caller does not have rights to retrieve information about specified account (the

account specified in the request is not a caller’s account or subaccount).

Status Code: 500
Message: Unable to get list of available results
Description: Unable to get list of available results – internal server error.

57

POST /app/api/benchmark/calculate

Status Code: 400
Message: Assessment ID not specified
Description: The assessment_id parameter not found or is set to 0.

Status Code: 403
Message: Not allowed to calculate benchmark for the account specified in the request
Description: The caller does not have rights to use specified account (the account specified in the

request is not a caller’s account or subaccount).

Status Code: 403
Message: Benchmark does not exist or not allowed to apply benchmark specified
Description: The caller’s account (or subaccount specified in the request) does not have active

subscription for the benchmark specified in the request or the benchmark with specified ID
does not exist.

Status Code: 500
Message: Unable to calculate benchmark
Description: Unable to calculate benchmark – internal server error.

GET /app/api/benchmark/calculated/list

Status Code: 403
Message: Not allowed to retrieve information about the account specified in the request
Description: The caller does not have rights to retrieve information about specified account (the

account specified in the request is not a caller’s account or subaccount).

GET /app/api/benchmark/calculated/results/:config_id

Status Code: 403
Message: Pre-calculated benchmark does not exist or not allowed to access pre-calculated

benchmark
Description: The caller does not have rights to retrieve information about specified pre-calculated

benchmark (pre-calculated benchmark specified is associated with the account that is not
a caller’s account or subaccount).

58

GET /app/api/benchmark/calculated/report/simple/:benchmark_result_id

Status Code: 403
Message: Result does not exist or not allowed to get PDF report for the result specified
Description: The caller does not have rights to retrieve information about specified user benchmark

scores (the result is of pre-calculated benchmark associated with the account that is not a
caller’s account or subaccount) or the user benchmark result with specified ID does not
exist.

Status Code: 500
Message: Unable to load result details
Description: Unable to load result details – internal server error.

Status Code: 500
Message: Unable to generate PDF report
Description: Unable to generate PDF report – internal server error.

GET /app/api/benchmark/calculated/report/full/:benchmark_result_id

Status Code: 403
Message: Result does not exist or not allowed to get PDF report for the result specified
Description: The caller does not have rights to retrieve information about specified user benchmark

scores (the result is of pre-calculated benchmark associated with the account that is not a
caller’s account or subaccount) or the user benchmark result with specified ID does not
exist.

Status Code: 500
Message: Unable to load result details
Description: Unable to load result details – internal server error.

Status Code: 500
Message: Unable to generate PDF report
Description: Unable to generate PDF report – internal server error.

59

GET /app/api/benchmark/apply/:benchmark_id/:result_id

Status Code: 400
Message: Assessment not complete
Description: The system cannot apply benchmark to the results of the unfinished assessment.

Status Code: 403
Message: Benchmark does not exist or not allowed to apply benchmark specified
Description: The caller’s account does not have active subscription for the benchmark specified or the

benchmark with specified ID does not exist.

Status Code: 403
Message: Result does not exist or not allowed to get benchmark scores for the result specified
Description: The caller does not have rights to access results of the assessment test (the user who took

the test is not associated with the caller’s account or subaccount) or the result with
specified ID does not exist.

Status Code: 500
Message: Unable to load result details
Description: Unable to load result details – internal server error.

60

GET /app/api/benchmark/apply/report/simple/:benchmark_id/:result_id

Status Code: 400
Message: Assessment not complete
Description: The system cannot apply benchmark to the results of the unfinished assessment.

Status Code: 403
Message: Benchmark does not exist or not allowed to apply benchmark specified
Description: The caller’s account does not have active subscription for the benchmark specified or the

benchmark with specified ID does not exist.

Status Code: 403
Message: Result does not exist or not allowed to get PDF report for the result specified
Description: The caller does not have rights to access results of the assessment test (the user who took

the test is not associated with the caller’s account or subaccount) or the result with
specified ID does not exist.

Status Code: 500
Message: Unable to load result details
Description: Unable to load result details – internal server error.

Status Code: 500
Message: Unable to generate PDF report
Description: Unable to generate PDF report – internal server error.

61

GET /app/api/benchmark/apply/report/full/:benchmark_id/:result_id

Status Code: 400
Message: Assessment not complete
Description: The system cannot apply benchmark to the results of the unfinished assessment.

Status Code: 403
Message: Benchmark does not exist or not allowed to apply benchmark specified
Description: The caller’s account does not have active subscription for the benchmark specified or the

benchmark with specified ID does not exist.

Status Code: 403
Message: Result does not exist or not allowed to get PDF report for the result specified
Description: The caller does not have rights to access results of the assessment test (the user who took

the test is not associated with the caller’s account or subaccount) or the result with
specified ID does not exist.

Status Code: 500
Message: Unable to load result details
Description: Unable to load result details – internal server error.

Status Code: 500
Message: Unable to generate PDF report
Description: Unable to generate PDF report – internal server error.

62

GET /app/api/benchmark/apply/client_side/:benchmark_id/:result_id

Status Code: 400
Message: Assessment not complete
Description: The system cannot apply benchmark to the results of the unfinished client-side

assessment.

Status Code: 403
Message: Benchmark does not exist or not allowed to apply benchmark specified
Description: The caller’s account does not have active subscription for the benchmark specified or the

benchmark with specified ID does not exist.

Status Code: 403
Message: Result does not exist or not allowed to get benchmark scores for the result specified
Description: The caller does not have rights to access results of the client-side assessment test (the user

who took the test is not associated with the caller’s account or subaccount) or the result
with specified ID does not exist.

Status Code: 500
Message: Unable to load result details
Description: Unable to load result details – internal server error.

63

GET /app/api/benchmark/apply/client_side/report/simple/:benchmark_id/:result_id

Status Code: 400
Message: Assessment not complete
Description: The system cannot apply benchmark to the results of the unfinished client-side

assessment.

Status Code: 403
Message: Benchmark does not exist or not allowed to apply benchmark specified
Description: The caller’s account does not have active subscription for the benchmark specified or the

benchmark with specified ID does not exist.

Status Code: 403
Message: Result does not exist or not allowed to get PDF report for the result specified
Description: The caller does not have rights to access results of the client-side assessment test (the user

who took the test is not associated with the caller’s account or subaccount) or the result
with specified ID does not exist.

Status Code: 500
Message: Unable to load result details
Description: Unable to load result details – internal server error.

Status Code: 500
Message: Unable to generate PDF report
Description: Unable to generate PDF report – internal server error.

64

GET /app/api/benchmark/apply/client_side/report/full/:benchmark_id/:result_id

Status Code: 400
Message: Assessment not complete
Description: The system cannot apply benchmark to the results of the unfinished client-side

assessment.

Status Code: 403
Message: Benchmark does not exist or not allowed to apply benchmark specified
Description: The caller’s account does not have active subscription for the benchmark specified or the

benchmark with specified ID does not exist.

Status Code: 403
Message: Result does not exist or not allowed to get PDF report for the result specified
Description: The caller does not have rights to access results of the client-side assessment test (the user

who took the test is not associated with the caller’s account or subaccount) or the result
with specified ID does not exist.

Status Code: 500
Message: Unable to load result details
Description: Unable to load result details – internal server error.

Status Code: 500
Message: Unable to generate PDF report
Description: Unable to generate PDF report – internal server error.

